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The emergence of chemical imaging (CI) has gifted spectroscopy an additional dimension. Chemical
imaging systems complement chemical identification by acquiring spatially located spectra that enable
visualization of chemical compound distributions. Such techniques are highly relevant to pharmaceutics
in that the distribution of excipients and active pharmaceutical ingredient informs not only a product’s
behavior during manufacture but also its physical attributes (dissolution properties, stability, etc.). The
rapid image acquisition made possible by the emergence of focal plane array detectors, combined with
ear infrared
aman

nfrared
hemical imaging
harmaceutics
pectroscopy

publication of the Food and Drug Administration guidelines for process analytical technology in 2001,
has heightened interest in the pharmaceutical applications of CI, notably as a tool for enhancing drug
quality and understanding process. Papers on the pharmaceutical applications of CI have been appearing
in steadily increasing numbers since 2000. The aim of the present paper is to give an overview of infrared,
near-infrared and Raman imaging in pharmaceutics. Sections 2 and 3 deal with the theory, device set-ups,
mode of acquisition and processing techniques used to extract information of interest. Section 4 addresses

the pharmaceutical applications.

© 2008 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
2. Basic principles of vibrational spectroscopy and imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

2.1. Vibrational spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
2.2. Device set-up for microspectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
2.3. From microspectroscopy to imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Abbreviations: AH, agglomerative hierarchical; ANN, artificial neural network; API, active pharmaceutical ingredient; ASA, acetylsalicylic acid; ATM, atomic force microscopy;
ATR, attenuated total reflection; BSS, blind source separation; BTEM, band target entropy minimization; CCA, cosine correlation analysis; CCD, charge coupled detectors;
CI, chemical imaging; CLS, classical least squares; csiFCM, cluster size insensitive fuzzy-C mean; 2D/3D, two-/three-dimensional; DA, discriminant analysis; DAC, directed
agglomeration clustering; DCLS, direct classical least squares; DESI-MS, desorption electrospray ionization linear ion trap mass spectrometry; D2O, deuterium oxide; DR,
diffuse reflection; EMSC, extended multiplicative signal correction; EVA, ethylene vinyl acetate; FCM, fuzzy-C mean; FNNLS, fast non-negative least squares; FPA, focal plane
array; FFT, fast Fourier transform; FIR, far-infrared; FOV, field of view; FT, Fourier transform; FTIR, Fourier transform infrared; HPLC, high performance liquid chromatography;
HPMC, hydroxypropylmethylcellulose; ICA, independent component analysis; IR, infrared; ITTFA, iterative target transformation factor analysis; KM, K-means; KSFA, key-set
factor analysis; LCTF, liquid crystal tunable filter; LDA, linear discriminant analysis; LLS, laser light scattering; LUT, look-up table; MBCD, methyl-�-cyclodextrin; MCR-
ALS, multivariate curve resolution-alternating least squares; MCT, mercury cadmium telluride; MIA, multivariate image analysis; MIR, mid-infrared; MLF-ANN, multilayer
feed-forward-artificial neural network; MLP-ANN, multilayer perception-artificial neural network; MNF, maximum noise fraction; MSC, multiplicative scatter correction;
NA, numerical aperture; NIR, near-infrared; NMF, non-negative matrix factorization; OLS, ordinary least squares; OPA, orthogonal projection analysis; PARAFAC:, parallel
factor; PAT, process analytical technology; PBS, phosphate buffered saline; PCA, principal component analysis; PDMS, polydimethylsiloxane; PEG, polyethylene glycol; PEO,

polyethylene oxide; PLGA, poly(lactic-co-glycolic acid); PLS, partial least squares; PMF, pos
acid; S.D., standard deviation; SIM, spectral identity mapping; SIMCA, soft independent
mixture analysis; SMCR, self-modeling curve resolution; SNR, signal to noise ratio; SNV
window evolving factor analysis.

∗ Corresponding author at: F. Hoffmann-La Roche A.G., Grenzacherstrasse, Basel, Switz
E-mail address: christelle.gendrin@roche.com (C. Gendrin).

731-7085/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2008.08.014
itive matrix factorization; RGB, red–green–blue; ROI, regions of interest; SA, salicylic
modeling of class analogies; SIMPLISMA, simple-to-use interactive self-modeling
, standard normal variate; SVM, support vector machine; UV, ultraviolet; WEFA,

erland.

http://www.sciencedirect.com/science/journal/07317085
mailto:christelle.gendrin@roche.com
dx.doi.org/10.1016/j.jpba.2008.08.014


534 C. Gendrin et al. / Journal of Pharmaceutical and Biomedical Analysis 48 (2008) 533–553

2.3.1. Acquisition of a hyperspectral cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
2.3.2. Comparison of acquisition processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

2.4. Sampling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
2.4.1. MIR and NIR sampling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
2.4.2. Raman sampling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

2.5. Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
2.5.1. MIR and NIR calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
2.5.2. Raman calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

2.6. Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
2.6.1. Diffraction limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
2.6.2. Penetration depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

3. Analysis of hyperspectral imaging data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
3.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
3.2. Extraction of distribution maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

3.2.1. Univariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
3.2.2. Multivariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

3.3. Extraction of quantitative parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
3.3.1. Image enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
3.3.2. Histogram analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
3.3.3. Image binarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

4. Pharmaceutical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
4.1. Sample preparation and measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
4.2. Chemical distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
4.3. Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
4.4. Content uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
4.5. Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
4.6. Dissolution and drug delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
4.7. Process understanding, troubleshooting, and product design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
4.8. Particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
4.9. Counterfeit and identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
4.10. Tablet imaging through blister packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

5. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
. . . . . .

1

m
i
n
a
d
t

s
t
m
H
r
m
a
n
a
(
M
c
c
[
i
n
t
q
I
n
a

t
t
u
f
p
o
t
i
w

a
w
(
s
T
s
s
b
e
t
i

o
c
n
i

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Introduction

Vibrational spectroscopy encompasses near-infrared (NIR),
id-infrared (MIR) and Raman spectroscopy. Aided by relentless

nstrumentational advance, these complementary techniques have
ow entered common use for the study of solid-state samples. They
llow both quantitative and qualitative analysis and can also be
eployed in-line. They have therefore found many applications in
he industrial pharmaceutical setting [1,2].

In 1949, in Nature, Barer and Cole reported the acquisition of
patially resolved spectra using a microscope [3]. This publica-
ion opened up new opportunities for spectroscopy by allowing

icroscopic samples to be analyzed. Four decades later, in 1988,
arthcock and Atkin obtained the first chemical map in the MIR

ange [4] using a microscope and moving stage. By revealing infor-
ation that is both spectral and spatial, the technique can identify

nd localize compounds. Subsequent refinements have been expo-
ential. Development of the first microscope-mounted focal plan
rray (FPA) detectors increased enthusiasm for chemical imaging
CI) [5]. Fast and robust acquisition is now possible in the NIR and

IR ranges and also with Raman spectroscopy. Almost all chemical
ompounds in a sample can be visualized within minutes. Appli-
ations have since increased in various fields, from waste sorting
6] to biological tissue [7] and food quality [8]. More recently, the
ntroduction in 2001 of the concepts of process analytical tech-
ology (PAT) [9] and quality by design sparked fresh interest in

he pharmaceutical industry. PAT is a generic term for monitoring
uality and performance parameters in production-based systems.
t has two objectives: (1) it requires the product to be monitored
ot only at the end of the production line, as at present, but also
ll along the line, in order to enhance quality; (2) it encourages

i
s
n
c
a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

he development of new process-monitoring methods and sys-
ems, thereby enhancing understanding of the process itself. One
ndeniable factor influencing the physical attributes of solid dosage
orms is compound distribution. For example, heterogeneous com-
ound distribution can decrease the rate of tablet dissolution [10]
r prompt process troubleshooting over poor powder flow or sticky
ablets [11]. CI is an ideal tool for resolving these issues when spatial
nformation is required [12]. Unsurprisingly, publications dealing

ith hyperspectral imaging have multiplied since 2000.
CI has also raised new data-processing challenges. A single

cquisition may record thousands of images across numerous
avelengths. The resulting image stack forms a three-dimensional

3D) matrix, or data cube, spanning two spatial dimensions with a
eries of wavelengths making up the third (spectral) axis (Fig. 1).
here are two challenges: (1) the data cube may be viewed as
patially located spectra, with the processing tools of classical
pectroscopy being applied to single spectra; (2) the data may
e viewed as images, with image-processing tools being used to
xtract higher-quality spatial information. CI thus combines the
echniques of spectroscopy and signal and image processing, mak-
ng it a truly multidisciplinary discipline.

This review will not only offer a comprehensive presentation
f the pharmaceutical applications of vibrational imaging but also
over and discuss the instrumentation and data-processing tech-
iques available. Section 2 (vibrational spectroscopy theory and

nstrumentation) encompasses several important aspects of imag-

ng, such as acquisition time, calibration, and resolution (both
pectral and spatial). Section 3 presents the processing tech-
iques available for extracting relevant information from data
ubes. Both parts refer to publications in other fields, such
s agriculture and biology, to corroborate and illustrate the
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ig. 1. Three-dimensional data cube recorded during a chemical imaging experi-
ent.

oints made. Section 4 is devoted exclusively to pharmaceutical
pplications.

. Basic principles of vibrational spectroscopy and imaging

.1. Vibrational spectroscopy

As its name indicates, vibrational spectroscopy uses the
articular spectral range from the electromagnetic spectrum
13,000–10 cm−1 or 0.76–1000 �m, depending on the units
mployed) at which the chemical bonds in molecules vibrate. This
pectral region encompasses three subdivisions: the far-infrared
FIR: 400–10 cm−1 or 26–1000 �m), MIR (4000–400 cm−1 or
.6–26 �m), and NIR (13,000–4000 cm−1 or 0.76–2.6 �m), named

n relation to the visible region. Two units are used in vibrational
pectroscopy: cm−1 (wavenumbers) or nm. The choice of one of
he units depends either on the type of spectrometer (dispersive
s. Fourier transform (FT)) or to avoid too large numbers in the NIR
ange where nm is more often used. The relationship between the
wo units is given by

cm−1] = 1

[nm] × 10−7
(1)

n NIR and MIR spectroscopy sample absorbance is recorded at
ach wavelength. NIR spectra arise from recording molecular over-
one and combination vibrations. The MIR spectrum records the
bsorbance of light (energy) at the vibrational and rotational fre-
uencies of the atoms within the molecule [13]. These frequencies
an be simplistically described by a spring model in which the
toms of a molecule shrink and elongate around an equilibrium
osition. Fig. 2a shows the MIR spectrum of an active pharmaceu-
ical ingredient (API). In this spectrum, the absorbance peaks are
umerous and fine due to these fundamental transitions, allow-

ng the identification of the functional group and molecule. On the

ther hand, absorbance is strong. Consequently, either the samples
ust be diluted into nonabsorbing matrix to avoid saturating the

etector or advanced sampling techniques such as attenuated total
eflection (ATR) must be used [14] (Section 2.4), making mid-IR
mpractical for in-line analysis of solids.

b
b
o
s

Fig. 2. Mid-infrared (a), near-infrared (b), and Raman (c) spectra of an API.

Combination and overtone vibrations are recorded in the NIR
ange. In the NIR spectrum of an API (Fig. 2b), the spectral range is
arrower than in the MIR range. Peaks are also broader and over-

ap, complicating the clear identification of chemicals from their
eak positions. Statistical analysis of the spectra is often required
or molecule identification and quantification. However, since the
bsorbance signal is weak, due to low probability of occurrence of
vertone and combination vibrations, samples require no prepara-
ion and analysis is nondestructive. The samples might be analyzed
hrough glass because it is transparent in the NIR due to a lack of
ignificant X–H bonds and also through plastic depending on the
pectral window. The development of computer resources, com-
ined with user-friendlier devices (detectors that do not need to be
rozen), makes NIR the spectroscopy of choice for in-line applica-
ions.
Raman spectroscopy [15] involves not the absorption of light
ut its scattering. Samples are illuminated by a monochromatic
eam, usually a laser. When the beam hits the molecules, most
f the light is scattered at the same wavelength (elastic Rayleigh
cattering). However, an infinitesimal part (1 per 109 up to 1 per
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06) is scattered at shorter or longer wavelengths. This difference,
r wavelength shift, can be related to vibrations and thus chem-
cal bonds. The number of diffused photons at wavelength shifts
s recorded during a Raman experiment. The Raman spectrum of
n API (Fig. 2c) shows many narrow peaks across a wide spectral
ange and clearly identifies the molecules. It complements MIR
pectroscopy because the selection rules are not the same in the
wo spectroscopic techniques. For example, S–S and C C bands are
eak in the IR but among the strongest in the Raman spectrum

15,16]. The advantage of Raman spectroscopy is that it can analyze
he sample through glass or plastic due to the high energy of the
ncident beam. Samples also need minimum preparation. However,
uorescence (emission of photons due to electronic transitions of
toms when exposed to an electromagnetic radiation) may prevent
etection of the Raman bands.

.2. Device set-up for microspectroscopy

Microspectroscopy systems consist of four main parts [17]:

1) Light source. A single polychromatic thermal source is generally
used for MIR and NIR spectroscopy. An inert solid electri-
cally heated to 1500–2200 K irradiates uniformly in the IR
spectral range. Silicon-carbide is used in MIR and a tungsten
filament in NIR. In Raman spectroscopy, lasers emit the exci-
tation beam. Typical wavelengths of excitation in the visible
range are 488 nm (blue), 514 nm (green), 632 nm (red), and in
the NIR 785 nm, 830 nm and 1064 nm. The choice of wavelength
will depend on the solid-state properties of the sample and its
fluorescence. Longer excitation wavelengths prevent fluores-
cence but decrease also the intensity of Raman band roughly
proportional to the fourth power of the wavelength [16].

2) Splitter. The various techniques that have been developed differ
in their advantages and disadvantages. FT, tunable filter, and
diffraction grating spectrometers are the three main types used
in vibrational imaging:
• FT spectrometers record information from several wave-

lengths simultaneously. Their theoretical basis is described
elsewhere [18]. Their many advantages include: rapid (typi-
cally ∼1 s) acquisition across the whole spectral range; high
spectral resolution, down to 2 cm−1; high energy available to
the detector (because no slits are used); and high wavelength
repeatability thanks to using a laser for reference spectra. An
FT interferometer can be used for both MIR and NIR spec-
troscopy [19] but also Raman spectroscopy [20].

• Filters are useful for focusing on specific wavelengths. They
also dispense with moving parts in the spectrometer [21].
Several filters can be mounted on a wheel to select several
wavelengths. An alternative is a tunable filter [22], which
electronically controls spectral transmission by applying a
voltage. The liquid crystal tunable filter (LCTF) has become
the most popular technique for global imaging. Its advantage
over the filter wheel is that it can record more than 100 images
at different wavelengths. Filters are mainly used in NIR and
Raman hyperspectral imaging.

• A diffraction grating has a large number of parallel lines
or slits separated by a distance comparable to the wave-
length of light. When a polychromatic ray of light hits the
grating, it is dispersed in several directions and the angle

of diffraction is dependent on the wavelength. With single-
point detectors only one spectral point can be acquired per
position of the prism and detector. The full spectrum can
be acquired by rotating either part stepwise. Line detectors
enable several wavelengths to be acquired simultaneously

2

p
w
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[23–25]. Slits at the entrance and exit of the gratings remove
parasitic light. However, narrow slits can reduce drastically
the amount of signal reaching the detector whereas large
slits might decrease the spectral resolution of the spectrom-
eter. High detector sensitivity and high source intensity in
the NIR range make it suitable for NIR [24] and also Raman
spectroscopy.

3) Detector. Photon detectors are the most widely used in MIR and
NIR spectroscopy to record the signal after wavelength sep-
aration. In NIR, lead sulfide (PbS), indium antimonide (InSb),
and uncooled indium gallium arsenide (InGaAs) are commonly
used, whereas in MIR mercury cadmium telluride (HgCdTe
or MCT) is most used due to wide spectral sensitivity (from
2 �m to 20 �m, depending on the Hg/Cd concentration ratio)
[5,19,26–28]. Raman detectors are mostly 2D charge coupled
detectors (CCDs) [29].

4) Optics. The microscope is fitted with optical elements for
selecting spatial resolution. The choice of magnification levels
depends on the study aim. Typically 6×, 15×, and 32× objec-
tives are used on a mid-IR or NIR microscope [30], and 50× and
100× objectives on a Raman microscope. Additionally, Raman
microscopes are often mounted with a confocal aperture to tune
the penetration depth of the beam and thereby analyze only
few micrometers of the sample. Such systems can also focus
the beam at different sample depths to determine subsurface
composition [31].

.3. From microspectroscopy to imaging

.3.1. Acquisition of a hyperspectral cube
In classical spectroscopy a spectrum reflects the integrated spec-

ral information of the sample surface which depends on the spot
ize generated by the beam of light. Beginning in the early 1990s, CI
ystems became available for acquiring spectral and spatial infor-
ation simultaneously. The spatial locations of the spectra identify

hemical species inside the samples and map their distributions.
Three techniques are available for generating a hyperspectral

ube (Fig. 3):

1) Point mapping (Fig. 3a). This technique, the most used up to
2000, consists of a classic spectrometer combined with a mov-
ing stage [4]. The user defines a regular grid of spatial positions
above the sample surface. A spectrum is measured at one posi-
tion, the sample moves to the next measurement point on the
grid, a further spectrum is recorded, and so on for all positions
in the area defining the image. Almost all manufacturers now
offer point mapping for microscopic spectroscopy.

2) Line imaging (Fig. 3b). The detector acquires the spatial and
spectral dimensions simultaneously. As with point mapping,
the system acquires spectra according to predefined spatial
positions and the line is moved right to left and up to down
to cover the whole area. For example, a line acquiring 21 and 16
spectra simultaneously may be used for Raman [32] and Fourier
transform infrared (FTIR) [33] imaging, respectively.

3) Focal plane array (FPA) optical detectors (Fig. 3c) [5,27] are com-
posed of several thousand elements forming a matrix of pixels.
They enable thousands of spectra to be acquired simultaneously
[34]. Such systems have become increasingly popular in the last
10 years and several systems are now commercially available.
.3.2. Comparison of acquisition processes
Few papers in the literature compare point mapping, line map-

ing and widefield imaging. The strongest argument in favor of
idefield imaging is the faster acquisition time, making it an
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fraction of this light is reflected by the sample and recorded by
the detector (Fig. 5). In the MIR range, DR requires the sample to
Fig. 3. Three methods of acquiring a hyperspectral imaging data

nstrument of choice when analyzing dozens of samples. A study
omparing acquisition times between point mapping, line mapping
nd global Raman imaging systems for the same number of pixels
nd same illumination time found that an experiment using point
apping took about 12 days with 4 s of acquisition time/pixels,

ine scanning about 30 min with 4 s of acquisition time/line, and
idefield about 32 s for the acquisition of one image at one wave-

ength [34]. Another advantage of widefield is the ability to shorten
cquisition time and reduce data volume by choosing a specific
avelength, but this presupposes detailed foreknowledge of spe-

ific chemical vibrations. In another comparison of acquisition
imes using point mapping and widefield, 12.5 h were needed to
cquire 2500 spectra over a 1 mm2 area with a spatial resolution of
0 �m × 20 �m and spectral resolution of 16 cm−1 using an FT-NIR
pectrometer versus 5 min for 100 wavelengths and thousands of
pectra with a global illumination instrument [11]. The speed of a
ine-scan spectrometer is somewhere between point mapping and
lobal illumination depending on the number of pixels in the detec-
or, but the number of wavelengths that can be acquired is fixed by
he size of the detector.

On the other hand, due to its smaller area, a single pixel element
f a 2D detector integrates less signal than a single-element detec-
or used in a mapping study. Therefore, the signal to noise ratio
SNR) is lower in global imaging than in mapping when the same
etector illumination is used. For example, in FTIR global imag-

ng, the noise due to the FPA exceeds all other sources of noise
microscope or spectrometer), and integration time and the num-
er of frames coadded must be optimized to achieve a good SNR

n a relatively fast acquisition time [35]. Alternatively, a method of
educing noise for MIR imaging systems has been proposed based
n the acquisition of several backgrounds [36]. The same holds for
lobal Raman imaging: the laser has to be defocused to cover a
arge surface area, reducing the power reaching each element of
he detector. Spatial resolution, acquisition time and spectral reso-
ution have been compared between point mapping, line mapping
nd global imaging [37,38]. One author concluded: “With constant
ower density, the global imager is much faster than a line or focus
oint when an image with only one Raman shift is acquired but
uch slower if a complete spectrum is acquired at a single sample

osition” [37,38].

During a global imaging experiment, other sources of noise due

o the optics and the nonuniform pixel illumination must also
e taken into account. Different calibration schemes may help to
ecrease noise due to nonuniform illumination (Section 2.5).

ig. 4. Transmission measurement: the detector registers the signal passing through
he sample.

b
d
i

(a) point mapping, (b) line mapping, and (c) widefield approach.

Point mapping gives spectral resolution twice as accurate as
lobal imaging experiment [39] and is the best technique for study-
ng the distribution of minor compounds [32]. Moreover, it is

ore appropriate for analyzing rough-surfaced samples because
he focus can be tuned to each spatial position. The consensus is
hat the choice of technique depends on the application. Point map-
ing is ideal for analyzing a small area for minor compounds (e.g.

mpurity detection). If the SNR is less critical, and an overview of a
ell-characterized sample is required, then global imaging is more

ppropriate. Choosing whichever technique is a matter of compro-
ise.

.4. Sampling techniques

.4.1. MIR and NIR sampling techniques

.4.1.1. Transmission. In transmission measurement, the source
lluminates the sample and the detector is placed behind the sam-
le (Fig. 4) to acquire the fraction of light transmitted through the
ample. Transmission analysis requires the sample to be partly
ransparent. In most cases, in the MIR range, samples must be
iluted in nonabsorbing matrix otherwise no light might be trans-
itted to the detector. Liquid can thus be prepared as a dilute

olution in a cell. Solid samples are dispersed in a potassium bro-
ide disk or mull. Moreover, the powder particle size must be

maller than the radiation wavelength to avoid the Christiansen
cattering effect which appears as band distortion in the spectra
14]. Transmission has been extensively used to analyze thin sam-
les such as films [40–42] or tissues [43–45]. It is not possible with
hick samples such as tablets.

.4.1.2. Reflection. In reflection measurement, the detector is
laced on the same side of the sample as the source to record the
ignal reflected by the sample. The sample is presumed infinitely
hick and incapable of transmission. The two types of reflection

easurement commonly used in CI analysis of pharmaceutical
orms are diffuse reflection (DR) and ATR.

2.4.1.2.1. Diffuse reflection. Incoming radiation interacts with
he sample and is scattered by interaction with the particles. A
e diluted between 10 and 100 times to avoid saturation and band
istortion [31]. For this reason MIR-DR is rarely used for imaging:

ts use has not been reported in the literature. On the other hand,

Fig. 5. Diffuse reflectance measurement and penetration depth.
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ig. 6. Attenuated total reflection (ATR). The sample is placed on the surface of a
rystal. A pressure head ensures good optical contact.

ecause samples need no dilution at all in the NIR range (the bands
re weak), NIR-DR is widely used for the image analysis of thick
ontransparent samples in various noninvasive applications [6,46],
otably in the food industry [8,47,48] and pharmaceutics [49,50],
.g. tablets.

2.4.1.2.2. Attenuated total reflection. ATR was developed to
void sample dilution in MIR analysis [14]. When a beam of light
asses from a medium of high refractive index n2 to one of lower
efractive index n1, with an angle � greater than a critical angle
c (�c = sin−1(n1/n2)), total internal reflection of the light occurs.
TR sampling relies on this property of light. The sample is placed
n the optical surface of an ATR crystal objective (Fig. 6), usually
ade of zinc selenide (ZnSe), diamond, silicon (Si) or germanium

Ge) with refractive indices of approximately 2.4, 3.4, and 4.0. As
he refractive index of organic material is around 1.5, the light is
otally reflected at the crystal–sample surface interface. However,
he electric field of the radiation, or evanescent wave, penetrates
short distance (a few micrometers) and interacts with the sam-
le. The penetration depth is defined as the depth E0 at which the
lectric field amplitude falls to a value E = E0 exp(−1) and is given
y the following equation [51]:

p = �

2�n2

√
sin2� − (n1/n2)2

(2)

he penetration depth is dependent on the wavelength �. Thus only
minute sample volume is actually measured. This avoids scat-

ering effects [51,52] and allows analysis of solid samples, such as
owder or tablets, without need for dilution [53]. However, good
ptical contact must be ensured at the crystal–sample interface.
ontact is readily achieved with soft materials, but when analyzing
olid dosage forms, pressure needs to be applied, which may dam-
ge the sample or crystal. Diamond crystals can withstand high
ressures but cost limits their size. ZnSe crystals have become a
ommon alternative [31].

.4.1.3. Accessories for high-throughput analysis. One advantage of
n FPA detector is that several samples can be studied simulta-
eously in a controlled environment using dedicated sampling
ccessories.

Snively and Lauterbach proposed several sampling accessories
or high throughput of gases in transmission analysis [54], e.g. a
even-sample temperature- and pressure-controlled reactor to test
atalyst heterogeneity at high temperature, and a 16 stainless steel

ube assembly sandwiched between MIR transparent windows for

onitoring 16 gas-phase reaction products.
In several publications, Kazarian et al. have reported using

olydimethylsiloxane (PDMS) grids placed on the surface of a
acro-ATR crystal to analyze 156 liquids on a field of view

p
fi
l
2
(
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FOV) measuring approximately 1.5 cm × 2.2 cm [55]. Another
our-channel PDMS grid is used to study four dissolutions simulta-
eously [56]. Other cells are designed to control temperature and
umidity [40] for the investigation of powder compaction [57].

.4.2. Raman sampling techniques
Raman analysis is much more straightforward than IR spec-

roscopy and little sample preparation is needed. Visible and NIR
aser sources allow analysis through cell or glass, and with the con-
ocal aperture the laser beam penetrates only few micrometers into
he sample. Moreover, sample morphology does not affect band
hapes or relative intensities [31]. However, the heat induced by
ocusing the laser beam at high resolution may burn the sample.

.5. Calibration

As in classic spectroscopy, calibration is a mandatory prelimi-
ary to hyperspectral imaging. In particular, spatial variations due
o nonuniform illumination and detector noise must be reduced
hen using an FPA.

.5.1. MIR and NIR calibration
The parameter of interest in IR spectroscopy is the fraction of

ight absorbed by the sample. Absorbance is indirectly calculated
sing the intensity of incoming radiation (background signal I0),
nd the light intensity recorded either in transmission or reflection.
n transmission, acquisition of the background signal is straightfor-
ard, being recorded when there is no sample in the beam path.

n reflection, a glass surface with a fine gold coat reflects the total-
ty of the MIR beam. With ATR, the crystal is simply placed in air.
nce a sample signal has been recorded in transmission or reflec-

ion (intensity I), sample absorbance A is usually calculated using
he following equation:

= −log
(

I

I0

)
(3)

n NIR-DR spectroscopy, background is typically acquired using a
igh reflectance ceramic standard. The absorbance spectrum is then
alculated using Eq. (3). In NIR-CI, however, InGaAs detectors are
ften used. They have a dark current – the detector response when
o signal is recorded – that is wavelength-dependent [58]. It is mea-
ured by blocking the camera lens and must be subtracted from
he raw signal. Reflectance is then calculated using the following
quation:

= I − D

I0 − D
(4)

here D is the dark response of the detector.
Absorbance A is given by

= −log
(

I − D

I0 − D

)
(5)

R calibration with acquisition of a dark cube and 100% standard
eflectance assumes detector response to be linear between 0% and
00% reflectance. However, this assumption may be mistaken and
nding a true 100% reflectance standard may be difficult. More
obust calibrations are described in the literature. Proposals have
ncluded the use of four standards with 2%, 50%, 75% and 99%
eflectance [58], fitting a linear or quadratic regression at each pixel

osition using the four values (quadratic regression gave a better
t in that study, suggesting that the detector response was non-

inear). The same group have also used six standards (dark, 2%,
5%, 50%, 75%, and 99%) and three methods of calibration [59]:
1) global or pixelwise data subset selection; in global selection a
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edian spectrum is computed for each reflectance standard hyper-
ube, regression is performed, and each pixel is corrected using the
ame coefficients; in pixelwise section, each pixel is individually
orrected; (2) a linear or quadratic regression model, as previously
roposed [58]; and (3) comparing the possibility of first scanning
ach standard and then the sample (external calibration) or inte-
rating the standards in the same FOV with the test sample (internal
alibration); external calibration corrects pixel-to-pixel variance
hereas internal calibration may correct time-dependent varia-

ions due to temperature or power fluctuation. The first experiment
ested the value of scanning several standards for calibration. The
esults clearly demonstrated the improvement in calibration qual-
ty with the combination of a range of spectral standards, fitting to a
uadratic model, and pixelwise correction. The second experiment
imulated lamp aging (decreasing lamp power); internal correction
educed measurement error.

Another standardization method has been recently proposed
or line-scan NIR imaging systems [60]. Calibration is first per-
ormed following Eq. (4). Several reflectance images of samples
iving a spatially uniform spectral response are then acquired.
ince the sample spectral response is uniform, most pixel noise
s presumed due to illumination unevenness or difference among
etectors. To correct for these artifacts, data cubes (x × y × �) are
rst reduced to an x × � 2D image (termed “average line image”
y Liu et al.) by averaging the y-dimension, thereby relating each
alue of the 2D image to a detector sensor. The average spec-
rum of each data cube is then calculated and used as a reference
alue. The spatial/spectral values of lx� (average line image at the
patial/spectral coordinate position x and �) for all average line
mages are plotted on the same graph (24 average line images in
his case) against their reference value, revealing a linear relation-
hip from which slope and bias are calculated. Each spectral/spatial
osition of the detector is thus associated with two correction
oefficients (slope and bias) which are then used to correct new
ata cubes. This method is easy because only homogeneous stan-
ards are required and the ‘true’ reflectance does not need to
e known. The standardization performed in this study signifi-
antly decreased the standard deviation (S.D.) at each wavelength
and.

.5.2. Raman calibration
As Raman spectroscopy involves light scattering, not

bsorbance, acquisition of the Raman spectrum is direct and
oes not need to be preceded by recording a background signal.
he calibration of Raman systems is not required before each
easurement. Silicon or emission lines from light-emitting diodes

enerate strong, sharp and well-resolved peaks at a particular
aman shift. Thus checking the peak positions of these standards
onfirms apparatus Raman shift accuracy from day to day. A stan-
ard with known intensity over the wavelength (such as a tungsten
ource or luminescent standard) might be used to correct for peak
ntensity [61]. Raman calibration can degrade over time due to
ibration or temperature changes, but specifications determining
hen the device should be calibrated are rarely available [23].

.6. Spatial resolution

In imaging it is important to know the size of the finer patterns
o be resolved by the apparatus. This is determined by its spatial
esolution. Spatial resolution is defined by the Rayleigh criterion as

he minimum distance dm between distinguishable objects in an
mage.

Spatial resolution in hyperspectral imaging may be limited by
wo factors: on the one hand, device optics and the diffraction limit
mposed by the wavelength, and on the other, the depth of radiation

i
e
s
m
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enetration into the sample, itself dependent on the measurement
ode.

.6.1. Diffraction limits
For a microscope, dm can be defined by the Rayleigh criterion in

he following equation:

m = 1.22�

2n sin(�)
(6)

here � (nm) is the wavelength, n the refractive index of the
edium, and � the collecting angle of the device. n × sin(�) is also

nown as the numerical aperture (NA).
There have been several studies of spatial resolution in MIR.

ne study employed a standard USAF 1951 resolution target to
ompare the spatial resolution achievable in transmittance by sev-
ral imaging spectrometers [43]. The best imaging system gave a
patial resolution down to 2.4 �m at 4000 cm−1, according to the
ayleigh criterion using a 36× Cassegrain objective. Other studies
ave assessed the spatial resolution achievable in reflection using
icro- and macro-ATR accessories and a nylon filter or polymer film
ith fine patterns [33,62–64]. Micro-ATR may be able to achieve
�m spatial resolution in reflection. Macro-ATR may be useful

or analyzing large sample areas and gives a spatial resolution of
10 �m. However, macro-imaging generates spatial distortion of

he image which must be corrected.
In Raman microspectroscopy, spatial resolution is limited by the

ize of the laser beam in mapping experiments but can attain 1 �m.
n-line mapping and widefield Raman imaging, submicron resolu-
ion is achievable (e.g. 250 nm using 514.5 nm laser excitation for
lobal imaging) [34,65].

In order to overcome physical and instrumental limitations
nd achieve yet higher spatial resolution, some authors have
eveloped techniques known as super-resolution [66]: several low-
esolution images of the sample are first acquired, then precisely
nown translational shifts between these images produced by a
omputer-controlled stage are mathematically analyzed to produce
he high-resolution image. Such techniques open up new opportu-
ities in submicron pattern CI.

.6.2. Penetration depth
According to the photon pathlength in DR measurement mode

Fig. 5), a photon entering the sample will interact with the par-
icles and several reflections and diffractions will appear before
t exits the sample and reaches the detector. The gray area indi-
ates the volume in which interaction may occur. Penetration
epth is a measure of light entry into the sample. The shorter
he wavelength, the higher the energy of the incident beam. High
nergy leads to deeper penetration and thus to an increased vol-
me of interaction. Penetration depth is thus the limiting factor

n NIR-DR imaging [67]. A study using varying thicknesses of
ellulose placed on top of a substrate found that shorter wave-
engths (1100 nm) penetrated to an information depth of as much
s 777 �m whereas longer wavelengths (2380 nm) penetrated to
09 �m [68]. The maximum resolution achievable with NIR-DR is
robably not less than 30 �m due to the penetration depth of NIR
adiation [67].

. Analysis of hyperspectral imaging data
A key issue in hyperspectral imaging is how to extract relevant
nformation from the huge amount of data. Visual inspection of
ach wavelength image is time-consuming and probably impos-
ible when attempting to compare several data cubes. The data
ust therefore be reduced by several image planes and quantitative
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ig. 7. The four steps in the processing workflow of a hyperspectral data cube,
ith examples of methods. CLS: classical least squares; PCA: principal component

nalysis; PLS: partial least squares.

arameters. In the classical processing workflow of an hyperspec-
ral data cube (Fig. 7), the first step is preprocessing, to reduce base-
ine and scattering effects. The next step is to spatially locate each
ompound. Post-processing can also be applied to enhance contrast
r reduce noise. The final task is to determine parameters, such as
article size and shape and the distribution of pixel intensity, which
nable the images to be objectively compared. As hyperspectral
maging is an application spanning spectroscopy and image pro-
essing, most processing methods derive directly from these fields
nd have already been described in numerous reviews [1] and text-
ooks [69–71]. Their detailed exposition thus falls outside the remit
f this review, which will focus instead on their CI applications.

.1. Preprocessing

Spectral and spatial artifacts, such as rough surfaces, optic
ffects, and detector noise, must be removed in the preprocessing of
hyperspectral data cube. Hyperspectral raw images mostly feature

he same patterns depending on wavelength and reveal physical
ifferences on the tablet surface rather than chemical variation.
ppropriate preprocessing enables compound distribution maps

o be visualized [39]. The spectral pretreatments used in classical
ingle-point spectroscopy can be applied to hyperspectral imag-
ng. The first preprocessing step is baseline correction to reduce
he background effect of uncontrolled spectral variation. Deriva-

ive preprocessing is one solution but it increases the noise. Other
echniques use polynomial curves [72]. The second important step
n preprocessing is normalization. Raw spectra often feature overall
ntensity variation due to optical path differences [73]. Normalizing
he spectra consists of dividing each spectral value x� of a spectrum

e
c

b
i
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by a representative number a.

norm� = x�

a
, for � = 1 . . . �max (7)

here a can be the maximum value of the spectra, or the sum of all
alues in the spectra (unit area) or the sum of squares of all values
unit length). In the event of unknown variation (offset) between
pectra, it can be useful to subtract the mean value x̄ of x spectra
rom each spectral variable x�.

NIR spectra are often normalized using the standard normal
ariate (SNV) [74]. The denominator of the equation is the S.D. of
pectrum x.

norm� = x� − x̄√∑p
k=1(xk − x̄)2/(p − 1)

, where x̄ =
�max∑
�=1

x� (8)

final correction to remove scattering effects can also be applied.
ultiplicative scatter correction (MSC) [75] was developed for that

urpose. It linearizes the data to a certain extent. An ideal spectrum
epresentative of the data set X is first chosen. The mean spectrum

¯ is a good approximation. Linear regression is then performed
etween each spectrum xi of the data set and the representative
pectrum, leading to the calculation of the slope (bi) and bias (ai).

i� = ai + bix� + ei,� (9)

he corrected data are then given by

cori� = xi,� − ai

bi
(10)

lassical spectral preprocessing is thus applied to hyperspec-
ral data. However, imaging has an advantage over classical
pectroscopy: comparing the remaining pixel-to-pixel spectral
ariations can give more information about the sample or about
he ability of the preprocessing method to clean the spectra. For
xample, in a study to determine which spectral method was most
ffective at reducing baseline and scattering effects due to differ-
nt sizes of salt and sugar particles [76], each sample was scanned
ndividually. Kubelka Munk, SNV and absorbance transforms, unit
ength and unit area normalization, first and second derivative, and
everal MSC variants [75] were then applied to reduce the scatter
ffects in the hyperspectral NIR images. MSC was first applied to
ndividual images, then to all images simultaneously, thus leading
o different representative spectra for use in correction. Princi-
al component analysis (PCA) (Section 3.2.2.1) showed that global
iecewise MSC removed all variation due to particle size within
pectra, whereas derivative spectra did not remove particle size
ependency. Next, a partial least squares (PLS) model (Section
.2.2.1) was computed to predict sugar particle sizes. PLS predic-
ions based on the mean spectra provided accurate results, but
redictions made on individual pixels located differences in par-
icle size within a single tablet. Although global piecewise MSC is
est at minimizing particle size effects, PLS was still able to find suf-
cient correlated variance for accurately determining particle size,
s it led to broader particle size distribution. Predictions based on
ean spectra did not yield such information.
Kohler et al. [77] applied extended multiplicative signal correc-

ion (EMSC) [78] to separate physical and chemical information in
TIR microscopy images of biological tissues. The spatial informa-
ion provided by hyperspectral imaging showed that the scatter
hanges were in fact induced by textural changes resulting from
he heat treatment of beef, and that spectral pretreatment was thus

ssential for correctly interpreting the spectral changes due to the
hemical nature of the sample.

More advanced methods such as wavelet preprocessing can also
e applied to hyperspectral imaging to reduce noise in Raman imag-

ng spectra [79,80]. In these studies, prior spectral denoising using
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avelet analysis on the spectral range increased the correct pixel
lassification rate. Wavelets not only removed noise but also com-
ressed the data. They may thus help to reduce the memory load
nd computing time needed for processing hyperspectral images.

Pretreatments can be applied to the spectral as well as spatial
imensions. Including both dimensions may be more effective in
educing noise and revealing fine spatial patterns.

Transformations available for removing noise in the spectral
nd spatial dimensions as applied to FTIR hyperspectral imaging
81] begin with baseline correction and band ratio methods in the
pectral dimension. Transforms including PCA (Section 3.2.2.1), a
odified version of the maximum noise fraction (MNF) [82], and

he 2D fast Fourier transform (FFT) are then applied to the entire
ata cube. These techniques project the data into a new space
sing mathematical constraints. In this new space some elements
re kept and transformed back into the initial space as partially
enoised data. PCA and MNF optimize a criterion (maximum vari-
nce for PCA and between-band correlation for MNF) which leads
o a set of eigenvalues. The largest eigenvalues are considered
s describing relevant information whereas the smallest ones are
oise-related and discarded in the reverse transformation. FFT is
sed to transform each data cube image in the Fourier space where
igher-frequency components that are presumed to be noise are
ejected from the center. A spatial mask then cuts out these com-
onents. Central values are projected back into the image space
s a smoothed image. In these studies, MNF and PCA discriminated
etween noise and relevant information whereas FFT led to the loss
f fine spatial patterns of interest.

In another example of combined spectral/spatial correction [83],
he FFT was applied first to the spectral dimension and then to the
patial dimension to minimize pixel-to-pixel baseline interference
n FTIR imaging data. This successfully reduced baseline variation
nd data noise compared to classic two-point baseline flattening
orrection.

Spatial information is also useful in preprocessing Raman spec-
ra in order to remove random high-intensity spikes arising from
osmic rays. Classic Raman spectroscopy achieves this by summing
everal spectra of the same sample [84]. However, because a single
maging experiment acquires many spectra, alternative methods
ave been proposed for this special case. For example, a proce-
ure based on correlating neighboring pixels in an image data set
ssumes that a pixel has at least one adjacent pixel having similar
pectral information; thus if a pixel does not have a high correla-
ion with at least one of its adjacent pixels, it can be assumed to be
spike [85]. Zhang and Henson [86] subsequently considered the

ase of samples with a low API content, where one pixel may hold an
PI signal but its neighbor not. Whereas the previous method might
onsider this pixel an outlier, their proposed alternative is to add
he reference spectra of the pure compounds into the regression

odel in order to avoid pixel misclassification.
Wavelet preprocessing can also be applied to both dimen-

ions. Vogt et al. compared several techniques for hyperspectral
maging, showing that Haar wavelets give the fastest computation
imed, highest compressions, and preserve more spatial and spec-
ral information, whereas Daubechies wavelets preserve spectral
nformation [87,88]. They also proposed a hybrid algorithm com-
ining different wavelets for spatial and spectral compression; the
est combination in terms of time saving and information preser-
ation is Daub8 for the spatial dimension and Daub4 for the spectral
imension [88].
.2. Extraction of distribution maps

Chemical compounds in the sample are localized by extracting
istribution maps. Extraction has to be as accurate as possible to

u
m
c
p
a

Biomedical Analysis 48 (2008) 533–553 541

void pixel misclassification. Many methods have been developed
Fig. 8), most of which derive directly from classic spectroscopy
r image processing. Choice of the most appropriate method is
ased on the information available, the spectral signatures of the
ure compounds in the study system, and experimental noise. The
ajor division within these methods is that between univariate and
ultivariate analysis.

.2.1. Univariate analysis
Univariate analysis is the simplest method of obtaining distri-

ution maps. Laser light is absorbed (MIR and NIR) or scattered
Raman) by each chemical entity in a mixture at specific wave-
engths depending on its chemical bonds. Selecting the image
t those wavelength positions localizes the specific compounds
epicted by the pixels with the highest absorbance, i.e. highest

ntensity.
An alternative method is peak integration. At each pixel position,

he area under a specific spectral peak is calculated. The resulting
alues form a new image in which higher pixel intensity reflects
igher compound concentration.

If these methods are the most straightforward in revealing
hemical localization, they also require the study system to be
ell characterized. All compounds should be known and raw pow-
ers must be scanned to characterize their spectral signature. Since
he spectroscopist often knows the composition of the medicine,
nivariate analysis may suffice in most studies. For example, uni-
ariate analysis has been used to process FTIR imaging data sets
40–42,56,57,62,89–92]. However, overlaps in complex systems

ay prevent identification of specific wavelengths for each com-
ound, especially in the NIR range. In addition, there will be cases
here a constituent is unknown (contamination studies, for exam-
le) or at such low concentration that univariate analysis fails to
xtract sufficiently reliable distribution maps. In such cases, multi-
ariate analysis is more appropriate for characterizing fine spectral
ariation and for localizing compounds [32,93,94].

.2.2. Multivariate analysis
Multivariate analysis takes into account all the spectral infor-

ation contained in the data cube. Many analytical pathways are
vailable (Fig. 8), from factor analysis methods that aim to decrease
imension by using an underlying multivariate distribution [95,96],
odeling the data into a linear combination of factors plus a noise

erm, to clustering techniques seeking to group spectra (whether
ull or in the reduced spatial dimension after factor analysis) on the
asis of shared features [97].

.2.2.1. Factor analysis. Factor analysis of hyperspectral data is
ased mainly on algorithms derived from classic spectroscopy in
hich each row of a 2D matrix represents the spectra of one
easure. However, instruments generate a stack of images, i.e.
3D matrix. An unfolding step is thus required before classic

actorial methods can be applied. The data cube D of dimen-
ion nmax × mmax × �max is thus transformed into a 2D matrix
= ((nmax × mmax) × �max) = imax × �max (Fig. 9). The processing of

hese unfolded cubes will be discussed first, before considering the
ethods analyzing three-way or higher dimensionality matrices

hat have been developed in recent decades by the chemometric
ommunity.

3.2.2.1.1. Two-way processing. Principal component analysis and
artial least squares. PCA and PLS [95] are the two algorithms most

sed in the chemometric community for extracting chemical infor-
ation. PCA aims to reduce matrix dimensionality by removing

orrelation between variables. The data are projected on a new
rincipal component subspace (Fig. 10). The principal components
re iteratively computed, the first being constructed to explain as
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Fig. 8. Classification of methods for extracting distribution maps and some examples. AN
analysis; MCR-ALS: multivariate curve resolution-alternating least squares; OPA: orthogon
PMF: positive matrix factorization; SVM: support vector machine.

F
d

m
t
n
n

F
c
o
b

c
m
n
p
i
a
i
t
i
a
h
i

b
l
x
m

ig. 9. Unfold procedure. The three-dimensional matrix is transformed into a two-
imensional matrix by unfolding the spatial dimensions.
uch of the data variance as possible, the second being constrained
o be orthogonal to the first and explaining the residual variance
ot taken into account by the first, and so on. The principal compo-
ents are known as loadings and data projections onto the principal

ig. 10. Geometric visualization of principal component (PC) analysis. The first prin-
ipal component captures most of the variance. The second is constrained to be
rthogonal to the first and to explain the residual variance not taken into account
y the first.
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N: artificial neural network; CLS: classical least squares; LDA: linear discriminant
al projection analysis; PCA: principal component analysis; PLS: partial least squares;

omponents are known as scores. The first loadings account for the
ost useful information whereas later loadings mostly describe

oise. Dimensionality is reduced by discarding these noisier com-
onents. After the PCA transform, each column of the score matrix

s folded back to form an image that represents pixel variability
long the corresponding loadings. PCA has been extensively used
n hyperspectral image analysis to determine compound distribu-
ion in NIR-CI [50] and in particular to identify minor compounds
n Raman imaging [32,65,98], since it can reveal fine spectral vari-
tions. However, while useful in explaining variance, it does not
ave chemical meaning. Since PCA loadings depict negative values,

t may be difficult to relate them to chemical compounds.
PLS [99,100] is used to predict the variable(s) of matrix Y

ased on observing the variable(s) of matrix X. Y is projected onto
atent variables (t1, t2, . . . , tkmax ) which are linear combinations of
1, x2, . . . , x�max . A first calibration step is required to build the
athematical model linking the X and Y matrices, using a set of

amples in which the X and Y matrices are clearly known. For exam-
le, in the case of NIR quantification of chemical compounds, the
pectra form the rows of the X matrix and the known concentra-
ions the rows of the Y matrix. Once developed, the model must be
alidated with a set of known values before it can predict unknown
amples. Burger and Geladi [101] recently compared spectra from
hyperspectral image and those from two classic spectrometers

n terms of sample content prediction. The prediction error from
he hyperspectral imaging spectra was between that of the two
pectrometers, showing that the hyperspectral image can be used
or quantification. PLS regression applied to hyperspectral imag-
ng has at least two advantages over classic spectroscopy: (1) after
redicting each pixel, each column of the predicted Y matrix can
e folded back to display the spatial distribution of predictions;
or example, when the predictions are relative concentrations, the
ompound distribution maps can be visualized [101,102]; (2) a data
ube might contain several thousand spectra which can be divided

etween calibration and validation sets; the calibration models can
e computed using the mean (or median) spectrum of individual

mages. The user might also consider the mean spectrum of several
patial regions of interest (ROI) in a data cube including thousands
f spectra as a calibration set [102]. The data can then provide
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everal calibration sets to optimize the model, for use in predicting
ixel-to-pixel concentrations.

In hyperspectral imaging, it is also possible to construct a PLS-
iscriminant analysis (PLS-DA) classification method using pure
eference spectra to extract the compound distribution maps. The
im is to identify latent variables that will enable class separa-
ion by taking into account the class membership of observations
103]. This method has been used to predict binary mixtures from
IR-CI images [104] but also to display compound distribution

11,39,105]. However, when a complex matrix is under study or
hen compounds are homogeneously distributed or present at low

oncentration, extracting distribution maps by PLS-DA classifica-
ion may be less straightforward, due to differences between the
raining library (the pure spectra) and the sample to be predicted
39].

Bilinear modeling. The two classic factorial methods, PCA and
LS, use mathematical constraints to extract the factors carrying
he most relevant information. Although useful in explaining vari-
nce, however, it can be difficult to interpret the loadings and
elate them to a chemical species. Thus alternative methods have
een developed to unravel the pure spectra of the chemicals and
heir respective concentrations from the mixed spectra. The anal-
sis is based on the bilinear model, according to which a sample’s
bsorbance results from the sum of the absorbances of its compo-
ent chemical species. Thus the mixed spectrum may be viewed
s the weighted sum of each pure material spectrum plus experi-
ental noise. This phenomenon is mathematically described in the

ollowing bilinear model:

= CST + E (11)

here X is a two-way observed signal matrix, C is a column-wise
atrix (nmax × kmax) of chemical species concentration/abundance,

T is the pure spectra matrix (kmax × �max), and E is residual noise
Fig. 11).

If the pure spectra matrix ST is available, the direct classical least
quares (DCLS) algorithm, also known as ordinary least squares
OLS), may recover the distribution maps. This method consists in

inimizing sum of the square errors, i.e. minimizing ||X − CST||2. C
s estimated by the pseudoinverse:

= XS(STS)
−1

(12)

f a set of concentrations is available, CLS can also be used to esti-
ate the pure spectra:

T = (CTC)
−1

CTX (13)

o a certain extent DCLS may give information about relative
onstituent concentrations [39]. Although differences in spectral
ackground and nonlinearity, especially in the NIR region, may pre-
ent accurate concentration determination, DCLS extract reliable
istribution maps for well-characterized samples, such as those
rom pharmaceutical development [34,93].

If sparse information is available for the analysis, then the C and
T matrices must be extracted simultaneously. Factorization of the
matrix into two positive matrices, C and ST, can have an infinity of

olutions. Mathematical constraints or constraints based on physi-
al phenomena must therefore be introduced to reduce the space of
ossible solutions [106,107]. The analytical community refers to the
ethods that unravel mixed spectra as self-modeling curve reso-

ution (SMCR). Many methods have been proposed since the 1970s

108] for factorizing the X matrix (reviewed in Refs. [109,110]). The
rst kind of SMCR algorithm factorizes the X matrix using mathe-
atical constraints.
Mathematical resolution. To achieve loadings more representa-

ive of chemical information, methods have been developed that

Q
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e
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tart in the principal component space and attempt to find appro-
riate rotation of the principal components. For example, key-set

actor analysis (KSFA) [111] constructs the set of key factors that
re the most orthogonal to each other, while iterative target trans-
ormation factor analysis (ITTFA) [112] tests whether the factor
roduced by principal component rotation is a true factor.

The recently proposed band target entropy minimization
BTEM) algorithm [113] has been applied to Raman images of phar-

aceutical tablets [114]. Entropy is a measure of system disorder. If
he entropy value is low, the system is organized and simple. Since
ure spectra are assumed to be the simplest underlying patterns,
inimization of entropy should be an appropriate choice. In the

roposed procedure, each pure spectrum is individually estimated
y rotating the principal components. After PCA, the rotation matrix
s optimized by minimizing an objective function that includes two
erms: the first minimizes entropy, while the second ensures non-
egativity of the spectra.

Other methods work directly with the X matrix. Perhaps the
ost popular are the simple-to-use interactive self-modeling mix-

ure analysis (SIMPLISMA) algorithm proposed by Windig and
uilment [115] and orthogonal projection analysis (OPA) [116].
IMPLISMA identifies the purest columns in the X matrix using a
riterion calculated from the column means and S.D.s. The purest
olumns form the C matrix, while the ST matrix is calculated using
q. (13). OPA identifies the spectra showing most dissimilarity in
he X matrix.

Independent component analysis (ICA) [117] has become partic-
larly popular in recent years. It optimizes a criterion that assumes
he sources to be statistically mutually independent. However, the
asic assumption of independence may not always be fulfilled in
his case because pure spectra (especially NIR spectra) may exhibit
orrelation [118,119]. Moreover, correlation between adjacent pix-
ls may also prevent good separation by ICA.

Introducing constraints based on physical meaning. The above
rocedures produce hypotheses about the data or pure spectra in
rder to derive a mathematical resolution of the bilinear model.
he solution is unique in most cases but it may happen that not
ll the spectroscopic data confirm the hypotheses. The procedures
ay also lead to unrealistic solutions, such as a negative spectral

rofile or concentration. Methods have therefore been developed
hat force the solutions into consistency with physical meaning.
t the core of such methods is the definition of a criterion to be
inimized under specific constraints. The constraints reduce the

pace for feasible solutions and can differ depending on the spec-
roscopic technique considered. The most widely implemented,
ecause applicable to all kinds of spectroscopy, is that both the
oncentration and spectral profiles be positive. Non-negativity is
he only constraint that can be set for hyperspectral imaging, with
he possible addition of the number of compounds present at an
ndividual pixel position, if known.

However, the currently most popular resolution method in ana-
ytical chemistry, including hyperspectral imaging, is undoubtedly

ultivariate curve resolution-alternating least squares (MCR-ALS)
nalysis [107]. The X matrix is factorized by minimizing the sum-
f-squares norm of the matrix of error E. The objective function Q1
o be minimized is then given by the following equation:

1 =
n∑

i=1

m∑
j=1

∥∥∥∥∥xij −
p∑

k=1

ciksT
kj

∥∥∥∥∥
2

(14)
1 minimization is achieved by alternately calculating the C and
T matrices by least squares fit (Eq. (12) and Eq. (13), respectively)
hile the other matrix is fixed. The constraints are applied with

very iteration after estimating one product matrix. For example,
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Fig. 11. Bilinear modeling: the mixed spectra matrix is facto

he positivity constraint can be forced by setting negative values
o zero or applying the fast non-negative least squares (FNNLS)
lgorithm [120] for smoother constraint.

In 1999, in a letter to Nature, Lee and Seung [121] published
he non-negative matrix factorization (NMF) for separating sources.
he algorithm also minimizes Q1 with specific update rules for the C
nd ST matrices that ensure spectra positivity and provide a mixing
oefficient for positive matrix factorization. A modified version of
he NMF, constrained NMF (cNMF), that includes constraint on the

inimum amplitude of the recovered spectra, has been applied to
aman imaging spectra [122] with good extraction results.

An alternative algorithm is positive matrix factorization (PMF)
eveloped by Paatero [123] which minimizes the Q2 criterion.

2 =
∑

i,j

(X − CST)
2
i,j

�2
i,j

(15)

here �i,j is the estimated uncertainty of the (i,j)th variable. The
ffect of introducing such weighting is that variables known with
he greatest precision will have the greatest influence on mini-

izing the Q2 function. Positivity constraints are applied using
enalty functions. The multilinear engine (ME) software developed
y Paatero can be used to optimize Q2 [124].

For computing MCR-ALS, PMF and NMF, matrices C and ST can
e initialized by random values or by preliminary estimates cal-
ulated using mathematical solutions such as OPA, SIMPLISMA, or
CA. Methods based on chemical constraints can thus be viewed as
refinement of a preliminary solution. The main drawback of these
ethods is that different initializations might produce different

esults.
Several studies have compared the performance of these

lgorithms in terms of hyperspectral imaging demixing. Thus

uponchel et al. evaluated OPA, SIMPLISMA, PMF and MCR-ALS in
yperspectral image deconvolution, as well as several initializa-
ions of MCR-ALS [125]. A synthetic MIR hyperspectral data cube
ontaining six polymers was generated, together with different
evels of noise and spectral shift to test the robustness of the meth-

w
s
m
a

nto two matrices related to concentration and pure spectra.

ds. Best results were obtained with OPA, followed by MCR-ALS,
hich was reported to be less sensitive to the signal-to-noise ratio.
ndrew and Hancewicz [126] also tried OPA/ALS and PCA/ALS on
aman images. The two algorithms had the same ability to extract
ure spectra and distribution maps, but OPA/ALS was faster. The
resent authors compared MCR-ALS, PMF, and NMF for demixing
IR imaging data [127]. PMF proved best at recovering pure spectra,
ut finding appropriate values for �i,j may not be straightforward.

Spatial constraints. Introducing spatial constraints may increase
he accuracy of pixel classification in homogeneous regions, espe-
ially if noise is present. With CI data sets, spatial information can
e used to determine the number of species present in a pixel, as
roposed in window evolving factor analysis (WEFA) [128], which
elects adjacent pixels included in a window centered on a pixel.
CA on the window then determines the number of species present.
his value is assigned to the center pixel, and the window is then
entered on the next pixel, and so on. Iteration of the procedure
n all pixels results in what is known as a rank image. Determin-
ng the number of chemical species in a pixel makes it possible
o refine factorization by incorporating zeros in the concentration

atrix provided that more information such as reference spectra
s known for clear identification of the present or absent chemical
pecies. De Juan et al. applied this method to Raman imaging data
ets [129,130].

To improve extraction, a modified version of ALS introduces a
atrix of weights that can be set in different ways: constant val-

es, linear change with iteration number, and percentage of S and
at each iteration [131]. Alternatively, the weight matrix can be

onstructed using probabilistic class partition (Bayesian discrimi-
ant clustering) [132]. Thus the probability of compound presence

s determined during the computation at each pixel and acts as a
patial constraint.
3.2.2.1.2. Three-way modeling for hyperspectral imaging. Three-
ay modeling exists since the 1980s and may be an alternative

olution for describing both spectral and spatial information. Using
ultiway notation, a hyperspectral data cube may be viewed as

n OOV matrix where O is an object mode (i.e. observation or, in
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ur case, spatial dimension) and V a variable mode (i.e. spectral
nformation). Gurden et al. applied the multiway analysis algo-
ithm to multivariate images (successive video images acquired
ver time) [133,134]. The study system was relatively simple and the
arallel factor (PARAFAC) algorithm [135] was able to explain both

eatures of the experiment. However, when complex spatial pat-
erns are present, low-dimensional linear decomposition of spatial
imensions is not straightforward. A drawback with the PARAFAC
lgorithm is that the same number of components is used for both
he O and V directions. In the only other study in the literature
pplying the multiway analysis algorithm to multivariate images
134], the Tucker3 algorithm [136] was used for hyperspectral
maging decomposition. It explained the spatial dimension with a
igher number of underlying components. However, in OOV mode,
ultiway algorithms are mainly useful for compressing and denois-

ng the data. The number of images before and after transformation
emains the same. The study therefore concluded that unfolded
ethods (i.e. two-way models) are better suited to explorative data

nalysis and classifying OOV data, e.g. hyperspectral data, whereas
ultiway methods are more appropriate for analyzing OVV

ata.

.2.2.2. Clustering techniques. Clustering techniques group pixels
hat share similar features according to a criterion. A group of such
ixels is referred to as a class or cluster. Such classes or clusters can
e created using a criterion based on distance, probability, and a
riori information.

Clustering techniques come in two families: supervised and
nsupervised. Supervised clustering needs a set of samples already
ssigned to a class. This serves as a training set to compute a model
hat will then be used to classify unknown samples. Unsupervised
lustering classifies pixels without such a reference. Compre-
ensive reviews are available in textbooks [97,137] and journals
138,139].

3.2.2.2.1. Supervised clustering. The two widely used super-
ised clustering techniques in CI are linear discriminant analysis
LDA) and soft independent modeling of class analogies (SIMCA).
DA seeks a space that will best separate the class. The criterion
o be maximized is given by the between/within group variance
atio. LDA has been mainly used to analyze IR maps of biological
issue [7,45]. In these studies, LDA was performed after selecting
spectral region using a linear discriminant guided genetic algo-

ithm. Up to five kinds of biological tissue could be discriminated
nd the successful classification rate was 95%. SIMCA first computes
PCA for each class using the labeled spectra. For each PCA, lim-

ts are set defining the class in the principal component space. An
nknown spectrum is then projected onto each class model and

f the result falls between the limits of one of the classes, then the
pectrum is labeled as belonging to that class [70]. Brain metastases
ave been accurately classified from IR spectroscopic images using
IMCA [44].

Other supervised classification methods are based on correla-
ion analysis between pure spectra and pixel spectra. For example,
osine correlation analysis (CCA) uses the cosine of the angle
etween the pixel spectra and reference spectra in the �max dimen-
ional space. CCA of Raman spectra has been used to generate
ccurate tablet distribution maps [140].

Bayesian approaches may also be used for classification.
ayesian theory uses the probability that an observation may
elong to class ωi. The model is constructed so as to minimize the

robability of false classification. For example, Bhargava et al. [141]
pplied Bayesian classification to discriminate between 10 classes
f cells and tissues in prostate histopathology. Instead of classi-
ying the pixels by their spectral values, the authors first defined
pectral metrics such as peak position, absorbance, and band ratio,
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hen determined the number of metrics to be used to achieve the
east classification error. Each observation was reduced to 20 met-
ics and yielded faster classification. The advantage of the Bayesian
pproach is that the calculation of the decision rules is not explicit
nd thus requires less computational load.

Another important linear method for supervised classification is
ultivariate image analysis (MIA) [142]. In MIA, PCA or PLS analysis

s first applied to the data sets. Then a 2D score plot is gener-
ted. Since pixels having the same spectral features cluster in score
lots, manual selection using a cluster training set can discriminate
etween pixel behavior. When the score plot region is correctly

dentified and linked to an image feature, pixels of new images can
e classified using the model. At least two studies have used MIA
or real-time process monitoring [143,144].

In the last decade, nonlinear approaches such as artificial neural
etwork (ANN) and support vector machine (SVM) analysis have

ound applications in the processing of hyperspectral imaging data
ecause they take nonlinear behavior into account. van den Broek et
l. used multilayer feed-forward ANN (MLF-ANN) to identify plastic
aterial by NIR-CI [145], while Lasch et al. classified FTIR micro-

copic imaging pixels using multilayer perception-artificial neural
etwork (MLP-ANN) analysis for histological characterization [146].
ernandez Pierna et al. used SVMs to classify compound feeds by
IR-CI [47,147]; comparison of SVM, ANN and PLS showed that SVM
as the most accurate in classifying their data. Similarly, compar-

son of SVM versus MIA classification in discriminating splits and
nots in NIR-CI images of lumber showed SVM to be an accurate
utomatic sampling technique [148].

3.2.2.2.2. Unsupervised clustering. Unsupervised clustering
reviewed in Ref. [149]) groups pixels having similar characteristics
ith no need for references or with at most information about

he number of clusters. Perhaps the most popular example is the
-means (KM) algorithm and its fuzzy-C means (FCM) variant. KM

s a distance-based hard classifier which assigns a pixel to one
lass only, whereas FCM attributes a degree of class membership.
ansfield et al. applied FCM to the analysis of NIR multispectral

mages of blood and tissue [150,151]. FCM has also been used to
egment Raman spectral imaging data [80]. Two FCM algorithm
ariants were developed to detect small clusters in the analysis
f multispectral visible images [152]: the cluster size insensitive
uzzy-C mean (csiFCM) algorithm outperformed classic FCM. Lasch
t al. [153] compared the ability of KM, FCM, and hierarchical
lustering to segment micro FTIR tissue. The agglomerative hierar-
hical (AH) algorithm proved the best method for differentiating
issue structure.

Šašic et al. proposed a clustering method based on 2D correlation
154,155]. After the mean spectrum is removed from the data set,
he 2D correlation matrix is calculated and used to identify the

ost characteristic spectra. Distribution maps are generated using
he CLS algorithm or univariate analysis. The method can be applied
o Raman images of pharmaceutical samples.

Spectral identity mapping (SIM), a modified version of
CA, extracts distribution maps in an unsupervised man-
er, and has successfully characterized polymer-coated paper
ubstrates [156].

The possibility of using spatial information to extract more
elevant segmentation has also been tested. Several clustering algo-
ithms were evaluated in combination with spatial information,
ncluding initialization, optimization, and post-processing [157];
ot only did the inclusion of spatial information improve the

egmentation of images containing homogeneous regions, it also
ppeared to reduce the problem of overlapping clusters and noise.
in et al. have recently proposed a novel approach using a spatial
irected agglomeration clustering method to detect drug poly-
orphs by Raman imaging [158].
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lar region at higher spatial/spectral resolution if minor compounds
need resolving [39]. This naturally depends on the particle sizes
of the tablet constituents and the spectroscopic technique used.
Ma and Anderson [165] tested objectives with different pixel sizes:
67.1 �m/pixel, 45.5 �m/pixel and 21.5 �m/pixel on a binary mix-
46 C. Gendrin et al. / Journal of Pharmaceutic

.3. Extraction of quantitative parameters

Having reduced the data cube and extracted the distribution
aps, the next task is to develop methods for interpreting the

mages: because pattern perception in images is user-dependent,
he application of image-processing techniques to enhance an
bject of interest can extract user-independent information. Such
echniques (reviewed in Ref. [159]) include color and contrast
nhancement, segmentation into homogeneous areas, edge detec-
ion, and texture classification.

.3.1. Image enhancement
Typically, images are digitized in 256 steps from low-intensity to

igh-intensity pixels. A color is assigned to each of the 256 values
ccording to a look-up table (LUT). For example, a gray-level LUT
ssigns black to low-intensity pixels and white to high-intensity
ixels. Intermediate values are displayed in shades of gray. A jet LUT
ssigns blue to low-intensity pixels and red to high-intensity pix-
ls. Intermediate colors of the visible spectrum are used to display
ntermediate values. Color assignment is normally linear. However,
o enhance regions with higher or lower intensities, square roots or
og transfer functions may be used instead. Other techniques such
s histogram equalization may also provide better contrast. Thus
athematical filtering and contrast adjustment of the histogram
ere applied to a single-band image [81]. Mathematical filtering

hanges the value of each pixel depending on the neighboring pixel
alues, and the different filters smooth the image or enhance the
dge. Bhargava et al. explain the advantages and drawbacks of each
echnique and suggest that depending on the application, the spec-
roscopist might find one or other method more appropriate to their
mage data sets.

Another useful tool for synthesizing results is red–green–blue
RGB) reconstruction. Each pixel has a value between 0 and 255 for
ed, green and blue, generating 2553 possible colors. By assigning
compound distribution map to each plane of the RGB image, the

ocalization of three compounds can be displayed simultaneously.

.3.2. Histogram analysis
Histograms are an important tool in image analysis. They plot

ixel number against intensity. The relative maximum of a his-
ogram is termed a mode. A distribution map histogram gives
nformation about sample homogeneity. Thus a histogram show-
ng a symmetric distribution with a narrow base and sharp peak is
epresentative of a low-contrast image and therefore of a homoge-
eous sample. Conversely, an asymmetric histogram with a wide
ase and flatter peak or several modes is representative of a more
ontrasted image, i.e. a heterogeneous sample. Four metrics are
ypically used [160] to characterize distribution on the image his-
ogram: mean; variance, describing variation about the mean;
kew, which measures asymmetrical tailing, a positive skew indi-
ating tailing towards higher values and a negative skew tailing
oward lower values; and kurtosis, or pointiness, which gives infor-

ation about the shape of the histogram peak. As the kurtosis of a
aussian distribution is 3, then kurtosis >3 indicates sharper peaks
ith a long tail whereas kurtosis <3 describes flatter peaks with a

maller tail. Histogram analysis of images extracted in univariate
r multivariate fashion has frequently been used to assess sample
omogeneity [76,101,104,160,161].

.3.3. Image binarization

Image binarization aims at separating the object of interest

foreground) from background. In some cases the patterns to be
egmented have nearly the same pixel intensities, meaning that
he histogram has a single mode. Thresholds can be set between
istogram modes so that pixels falling between two threshold lim- F
Biomedical Analysis 48 (2008) 533–553

ts belong to the object of interest and those outside are rejected
s background. The threshold can be user-defined, as in most
ublications on the pharmaceutical applications of CI. The main
isadvantage is that fixing the threshold is subjective, meaning that
hreshold values differ between users. Automated methods such as
tsu’s [162] may be an alternative solution. The problem of image
inarization by histogram analysis is that many images do not have
lear separate modes or they may have a mode which does not cor-
espond to a distinct structure in the image. Otherwise, most of
he clustering techniques discussed in Section 3.2.2.2 (KM, Gaus-
ian mixtures, ANN, etc.) can also be applied to classify pixels into
oreground and background so as to produce a binary image.

Binary images are also known as Boolean images because they
onsist of pixels having only two possible values: 1 (mostly associ-
ted with foreground) and 0 (mostly associated with background).
owever, a binary image is rarely perfect and the pixels may be
isclassified. For this reason, binarization has to be refined, e.g. by

ntroducing morphological operations [159]. Boolean procedures
enerate a new image by combining different binary images of
he same scene using Boolean AND/OR procedures. Morphological
perations act by setting pixels to 1 or 0 according to simple rules
ased on the value of neighboring pixels. For example, they remove

ndividual pixels, and narrow or widen edges. A major difficulty is
eparating contiguous features in a binary image.

Once an image has been properly segmented, information such
s mean particle size and S.D. can be extracted. The percentage
rea covered by the compounds can also be correlated with the
rue content of the sample [50,160,163].

. Pharmaceutical applications

.1. Sample preparation and measurement

For measurement to be as representative of a sample’s chemi-
al composition as possible, all physical effects such as superficial
oughness must be minimized. LaPlant has provided detailed
dvice on the preparation of powders and tablets [164]. Trustwor-
hy images from powders such as raw granulation or capsule fill
re difficult to obtain. A press can be used to generate a kind of pill
ut compression may compromise the test sample. Tablets are best
illed with a bevel-edged blade to remove the coating and flat-

en the surface (Fig. 12). However, depending on tablet hardness
nd friability, this may remove or displace some particles from the
urface for analysis.

It is difficult to be categorical about choosing an objective. Is it
etter to use high spatial resolution to detect fine patterns or low
patial resolution to cover a larger area of analysis? Best advice is
o take time first to map the whole surface, then focus on a particu-
ig. 12. Preparing the tablet surface for analysis: milling with a bevel-edge blade.
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ure blend containing 80% lactose, median particle size 100 �m, and
0% salicylic acid (SA), median particle size 30 �m. They reported
hat “higher magnification levels did not provide additional rele-
ant information about the surface features” even when the spatial
esolution of the higher magnification objective was lower than the
edian particle size. The 67.1 �m/pixel objective was thus prefer-

ble.

.2. Chemical distribution

Several studies have addressed the extraction of chemical distri-
ution maps from solid dosage forms, often comparing processing
r acquisition modes in order to evaluate the pros and cons of each.
n NIR reflectance mode, single wavelength images, RGB recon-
truction, and PCA analysis all reveal tablet compound distribution
aps [166–168], even successfully extracting the distribution maps

f compounds in a timed-release granule [168]. Such tablets form
omplex systems in several layers, each having its own functional-
ty in active substance release. Thus NIR-CI is an effective method
f controlling compound distribution, which is an important factor
n the dissolution behavior of the medicine.

Comparison between micro- and macro-ATR accessories for FT-
IR imaging of pharmaceutical formulations showed the main

ifference to reside in the spatial resolution that could be achieved.
acro-ATR enabled an area of ∼1 mm2 to be scanned, giving an

verall view of the tablet surface, whereas micro-ATR could ana-
yze an area of 250 �m2, detecting compounds at concentrations
s low as 0.5% [90].

Thanks to its specificity and fine spatial resolution, Raman spec-
roscopy in combination with advanced chemometric tools can
dentify compounds present at concentrations as low as 0.2% [114].
n a comparison between NIR-CI and Raman imaging at the same

agnification levels, Šašic [98] found that Raman imaging com-
ined with multivariate analysis detected all five compounds in a
ablet whereas NIR imaging failed to extract the two minor ones. In a
ubsequent study by Šašic [169] comparing global Raman imaging
nd NIR chemical mapping for detecting the chemical composi-
ion of granules, both techniques showed the granules to be mainly
mixture of API and mannitol whereas some granules contained
ure compounds. In the case of this formulation, compound visu-
lization was better with Raman imaging.

Many studies have also shown that classic multivariate analy-
is, e.g. PCA, OLS or direct classical least squares (DCLS), MCR and
CA, combined with Raman imaging, provides reliable information
bout tablet compound distribution [65,93,140,170]. More recent
ools such as 2D correlation [154,155] also accurately revealed the
ocalization of chemicals inside tablets containing up to four com-
onents.

Fig. 13 gives an example of a micro-RGB image of a tablet.
he low-dosage tablet was analyzed using a Raman spectrome-
er equipped with a line detector. Images of the Raman shift at
69 cm−1 for the API, 427 cm−1 for cellulose, and 347 cm−1 for lac-
ose were assigned to the red, green, and blue channels of the RGB
mage, respectively. The spectra localized in the domain specific to
ach compound accurately matched the reference spectra (Fig. 13,
ight plots). Correlation coefficients to the reference spectra were
.98 for the API, 0.91 for cellulose, and 0.96 for lactose, clearly
onfirming the compounds’ identities.

.3. Blending
During pharmaceutical production, blend homogeneity is
ssential if quality attributes, such as dissolution behavior, are to
e maintained, and if all tablets are to contain the correct amount
f API. The classic method of testing blend content uniformity is

i
a

a
t
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o remove an amount of powder using a sample thief and check
ts content by high performance liquid chromatography (HPLC)
r UV–vis spectroscopy. CI is now being studied as an alternative
pproach.

Classical NIR spectroscopy and CI were investigated as poten-
ial noninvasive methods with three binary mixtures composed of
ast-Flo lactose and variable amounts of SA [171]. NIR analysis was
erformed at different positions in the blender through six sap-
hire windows. Six images were acquired at different wavelengths
panning the lactose and SA peaks. The blender lids were removed
o allow access to the top surface of the powder for imaging, directly
n the blender (i.e. without sample removal). The reference method
sing classic sampling combined with UV spectroscopy was run in
arallel as an accuracy control. Cluster analysis and moving block
.D. along wavelength values (spectral space) were used to ana-
yze the classical NIR spectra. The moving block S.D. procedure was
pplied in multidimensional space. The study showed agreement
etween the NIR spectroscopic measurements and the reference
ethods. NIR imaging sampled a larger area (∼15 cm2) but only

he upper layer in this experimental configuration.
NIR-CI and classic NIR spectroscopic analysis were compared

n a study of tablets produced after different mixing times [172].
ommercial tablets were also used for further comparison with
xperimental tablets. Constituent homogeneity in the final tablets
as assessed by histogram analysis of univariate images or images

xtracted by PLS. NIR imaging was better than NIR spectroscopy
t detecting slight problems of homogeneity. The advantage of NIR
pectroscopy is that it can investigate microdomains within tablets
hereas classical integrating NIR spectroscopy tends to overlook

light heterogeneity.
A prototype fiber bundle-CI system for on-line inspection

f dry blend homogeneity has been recently, and briefly,
escribed [173]. The first steps in its codevelopment by Spectral
imensions (now Malvern) and Pfizer were described at www.in-
harmaTechnologist.com in 2005 [174]. This kind of equipment
ould allow on-line blend characterization by CI.

The wavelet transform has been successfully combined with PCA
o determine the texture of pharmaceutical tablets and characterize
he density and size of differently dosed API (paracetamol) [175].

Fig. 14 demonstrates the ability of NIR-CI to detect nonuni-
ormity in a low-dosage tablet containing 3% API. After SNV
ormalization and second derivative transformation, API, cellu-

ose, and lactose were mapped by selecting images at specific
avelengths (2140 nm, 2000 nm, and 1900 nm), followed by RGB

econstitution. The white circles clearly show the aggregates of API.

.4. Content uniformity

Several studies have addressed the potential of CI to calculate
ompound concentrations within samples. Jovanovic et al. [104]
sed binary protein–sugar mixtures (lysozyme–trehalose), at con-
entrations of 0%, 10%, 50%, 80%, and 100% (w/w) lysozyme, to
ompare methods for content. They created quantitative mod-
ls based on correlation coefficient and PLS regression to relate
he contrast directly to the concentration differences of each
onstituent. The method was then applied to dried and freeze-
ried samples containing 50% lysozyme and 50% trehalose. PLS-DA
egression was better at predicting concentrations in the calibra-
ion mixtures, but predictions with dried and freeze-dried samples
ere worse than expected, probably due to extra spectral variations
n the predicted sample compared to the spectral library. CI proved
useful tool for confirming mixture homogeneity.

The present authors used NIR imaging to predict API, cellulose
nd lactose in low-dosage pharmaceutical tablets [176]. API con-
ent was varied from 0% to 10% in 1% increments. Four tablets were

http://www.in-pharmatechnologist.com/
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Fig. 13. Micro-scale red–green–blue (RGB) image of a tablet. The data were acquired with a Raman spectrometer equipped with a line detector. Red depicts active pharma-
ceutical ingredient (API: white in the black-and-white version), green cellulose (gray in the black-and white-version), and blue lactose (black in the black-and-white version).
The spectra on the right were extracted from the data cube. API spectra were extracted from the red area, cellulose spectra from the green area and lactose spectra from the
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lue area. The spectra extracted from the data cube match the reference spectra (d
he API, 427 cm−1 for cellulose, and 347 cm−1 for lactose). (For interpretation of the
rticle.)

easured from each batch. A PLS model was built from the average
pectra and used to predict each pixel spectra. The concentrations
f API, cellulose, and lactose were calculated per data cube by aver-
ging each pixel prediction. DCLS based on pure spectra was also
ested as a method of prediction. Two preprocessing techniques
ere investigated: normalized spectra and normalized spectra fol-

owed by second derivative transformation. PLS was able to extract
ccurate predictions of API, cellulose, and lactose with both prepro-
essing treatments. DCLS worked well for the prediction of API with
econd derivative spectra but not for the prediction of cellulose and
actose. Hence, as with classical NIR spectra, PLS regression is the

ethod of choice for content prediction.
High-throughput NIR has recently been proposed for API con-

ent [177]. Instead of measuring calibration and test samples
eparately, a wide FOV (59.5 mm × 47.5 mm) was used and tablets
ere measured simultaneously. A single image at 1600 nm (API

eak) featured a trend correlated to the API concentration and this
avelength was therefore chosen for controlling content unifor-
ity. A calibration curve based on NIR intensities at 1600 nm was

omputed from calibration samples enabling unknown samples
o be subsequently predicted. Analysis was rapid and reliable in

t
p
p
w
a

line). Vertical lines: the wavelengths chosen to build the RGB image (269 cm−1 for
nces to color in this figure legend, the reader is referred to the web version of the

redicting API in comparison with UV. Analyzing calibration and
est samples simultaneously overcomes the problem of day-to-day
epeatability and instrument stability (e.g. waning lamp power). In
ddition, if a single wavelength suffices, then measurement is fast
nd data volume reduced. The authors estimated that by widen-
ng the FOV, it might be possible to analyze up to 1500 tablets
imultaneously, resulting in 100% control.

Raman imaging has also been used to predict API content.
esults with Raman point mapping and MCR-ALS in semi-
uantitative analysis showed errors up to 8% in predicting API or
xcipient concentration [178].

.5. Polymorphism

Lattice of a given crystal may vary, or a molecule may bind
ifferently with water or solvent (hydrate and solvate) leading

o different physical forms. It is important to detect and quantify
olymorphic forms because they can influence a tablet’s physical
roperties. Detection is more readily achieved with Raman imaging
hereas NIR or MIR is more appropriate for differentiating hydrates

nd solvates [39].
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Fig. 14. Macro-scale red–green–blue (RGB) image of a tablet containing 3% API.
The tablet was scanned by an NIR imaging system. The objective gives a spatial
resolution of 40 �m/pixel. Red depicts API (white in the black-and-white version),
green cellulose (gray in the black-and-white version), and blue lactose (black in the
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lack-and-white version). An API agglomerate is clearly visible (white circle). (For
nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)

Clark et al. described several examples of Raman mapping
pplications for polymorph detection [39]. Two dealt with the local-
zation of different API forms in raw API material, detecting fine
mpurities at concentrations as low as 1% (w/w). Others involved
he visualization of different API forms in a formulation blend. The
uthors claimed that API impurities could be detected at concen-
rations of 0.025%. They also showed that Raman imaging could
dentify polymorphic changes due to product manufacturing such
s hot melt extrusion or coating. In addition they used NIR imaging
o measure different levels of drug hydration due to varying process
lending or granulation methods.

Henson and Zhang [179] reported detecting 0.05% (w/w)
olymorphic impurity in a tablet matrix using Raman imag-

ng [158]. They applied directed agglomeration clustering (DAC)
o distinguish between two polymorphs. A set of binary mix-
ures with differing contents (0%, 25%, 50%, 75%, and 100% of
orm 1) was constructed; predicted concentrations proved a
lose match. Raman microscopy has also been combined with
tomic force microscopy (AFM) to investigate surface domains
f amorphous sorbitol [180]. The two methods were comple-
entary, AFM being more sensitive to surface differences and

aman providing lateral and depth information about amorphous
aterial.
Chan et al. [40,41] showed how transmission FTIR could be

eployed in monitoring polymorphic changes under a controlled
nvironment. They successfully visualized the transition of nifedip-
ne from the � form to the � form at 38 ◦C and 80% humidity for 4 h
40,41]. They also studied four binary mixtures of nifedipine and
itrendipine films at 40 ◦C and 90% humidity, showing both com-

ounds to be stable in the glassy phase at equimolar concentrations.
he advantage of this approach is that the samples were analyzed
imultaneously thanks to a macro chamber and wide array detector
128 × 128 pixels) which made robust comparison of the mixtures
ossible.

c
U
t
a
d
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.6. Dissolution and drug delivery

Classic dissolution tests and UV spectroscopy can determine
ow much drug has been released over time. However, these tech-
iques give no insights into the mechanism of drug dissolution, nor
llow study of any crystallization processes that may occur. Spatial
nformation has the potential to overcome these limitations, hence
he application of FTIR imaging to the study of drug release. Two
aboratories in particular have used CI to investigate dissolution.

Jack Koenig’s laboratory at Case Western Reserve University,
leveland, studied the diffusion of nicotine in ethanol/deuterium
xide (D2O) mixtures into an ethylene–vinyl acetate (EVA) copoly-
er membrane as part of an investigation into transdermal drug

elivery systems [181]. Their aim was to determine how different
ilutions of ethanol (0–100% in 20% increments) affected diffu-
ion. The measurements were done in transmission and they used
eak integration to monitor swelling of the EVA membrane over
ime and spatial compound distribution. They showed that nico-
ine diffused into the EVA membrane ahead of the solvent at ethanol
oncentrations ≤60%. When ethanol was present at 80%, D2O led
he diffusion front, but at the 100% concentration ethanol was first.
hey observed an exponential trend for an increase in swelling
ate with increasing ethanol in the solvent. Thus adjusting the sol-
ent composition could speed or slow the nicotine diffusion rate.
oenig’s group then used FTIR imaging to study the dissolution in
2O of testosterone suspended in polyethylene oxide (PEO) matrix

182]. They measured four binary mixtures containing different
mounts of drug (10%, 20%, 30%, and 40%), drawing the following
onclusions about the role of drug loading from the spatial infor-
ation obtained: in mixtures containing 10% and 20% testosterone,

olymer dissolution controlled the drug release, whereas at 30%
nd 40% dissolution of the drug dictated its release rate. Spectral
ariations also revealed localized changes in molecular structures.

Kazarian and Chan at Imperial College London drew on
he Koenig group’s work to study the release of differ-
nt polymer/drug formulations into water: polyethylene
lycol (PEG)/ibuprofen, PEG/sodium benzoate, and methyl-�-
yclodextrin (MBCD)/ibuprofen [183]. Due to the strong absorption
f water in the MIR range, they acquired spectral images using a
acro ATR accessory. They observed that the poorly soluble drug,

buprofen, crystallized during the addition of water whereas the
ighly soluble sodium benzoate did not. The initial conclusion was
hat drug solubility was essential and that crystallization should be
voided because of its impact on bioavailability. Experience then
howed that no crystallization occurred with the MBCD/ibuprofen
ixture, i.e. that choosing an appropriate polymer improved

elease behavior. Kazarian et al. since continued their work on
he dissolution of synthetic binary tablets in water using macro-
TR [184–187]. They designed a cell in which drug mixture was
ompacted on the surface of a diamond crystal and flushed with
ater to prevent saturation [184]. Study of the dissolution of a
ixture containing 20% caffeine and 80% hydroxypropylmethyl-

ellulose (HPMC) validated the device for dissolution monitoring.
ubsequently [185], they showed that a ZnSe crystal can also be
sed for in situ dissolution even if the compaction force has to be

owered: its advantage is a wider FOV that visualizes the entire
ablet surface; they also introduced PLS calibration to monitor
oncentration of HPMC release over time. In their next study
186], using UV to assay the liquid collected at the cell outflow
or the mixture of HPMC and niacinamide, they showed that the

oncentrations predicted by PLS regression closely matched the
V values and enabled distribution maps to be extracted over

ime for HPMC, drug, and water. Their most recent study [187]
ddressed the dissolution of tablets containing poorly soluble
rug (diclofenac) and HPMC. Medium pH was varied, and images
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ere extracted using DCLS. Drug release profiles were found not
o be pH-dependent. Precipitation was also detected and roughly
uantified.

The above studies confirm the utility of FTIR imaging for
lucidating drug release mechanisms. However, all the test
amples considered were synthetic binary mixtures and real
nal pharmaceutical solids often form a much more complex
atrix.

.7. Process understanding, troubleshooting, and product design

CI now plays an important role in new formulation development
nd process troubleshooting. This is because spatial compound dis-
ribution is an important factor in drug behavior, with particular
espect to dissolution profile, stability, and bioavailability.

Reich [53] described two applications of FTIR imaging: con-
rol of film coat uniformity on tablets, and chemical mapping
f the distribution of a model protein in polymer matrix tablets
poly[dl-lactide-co-glycolide] (PLGA)) immediately after process-
ng and during the release phase. The results showed that curing
he tablets produced a more uniform coating, and that after a period
nder in vitro release conditions, the protein appeared on the sur-

ace, indicating absorption effects.
Kazarian et al. have studied the effects of process parame-

ers on various solid dosage forms in four publications. Using an
xperimental set-up that visualized water vapor sorption into the
ifferent domains of a PEG–griseofulvin mixture under different
elative humidities (0.5–90% at 25 ◦C), they showed that the poly-
er mainly absorbed the water, especially above 70%, while spatial

rug distribution remained unchanged [42]. Next, using a cell plate
llowing the simultaneous monitoring of 100 polymer/drug for-
ulations under identical conditions (relative humidity 67% for

0 min), they studied several PEG/nifedipine mixtures containing
arying drug concentrations [91]. Formulations containing more
rug showed lower water sorption. In another important study for
he optimization of tablet production, they showed how tablet den-
ity increases with the addition of lubricant [57]. Most recently they
ave addressed the effects of moisture and pressure on tablet com-
action in a model drug composed of HPMC and ibuprofen, showing
ow tablet density increases with relative humidity [188].

MIR hyperspectral imaging has been used for process trou-
leshooting on actual pharmaceutical formulations [10,189], in
articular to resolve contamination and dissolution issues. Images
t specific wavelengths and PCA were used to extract the compound
istribution maps. The contaminant was revealed as a mixture
f indigo carmine and excipients, with a high residual moisture
ontent [10,189], while the dissolution issue was explained by an
xcess of magnesium stearate on the tablet surface preventing
ater action.

Hammond and Clarke [11] described four applications of NIR
oint mapping to solve process issues: (1) NIR-CI investigation of
iffering flow properties within a batch revealed nonuniform distri-
ution of lubricant as the root cause of poor flow; (2) NIR mapping
evealed areas with excess inorganic filler as the cause of tablets
ticking to the press punches; (3) tablet chipping after a change in
ugar supplier was explained by better mixing of the new sugar
ith the inorganic filler, resulting in weaker tablets more prone to

hipping; and (4) lubricant was revealed as the tablet excipient that
bsorbed water.

Clarke [50] investigated two different batches. The first had

problem of processability. In the bad samples, NIR imaging

generated with an FPA detector and processed by PCA analysis
nd RGB reconstruction) revealed larger domain sizes of polymer
omponents. In the second, NIR images generated by line map-
ing explained how tablet dissolution properties depended on

l
s

c
t
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oller compaction force: the cluster size of disintegrant material
ncreased with compression force.

Our own laboratory used CI to assess homogeneity in two
ntermediates produced using different process parameters (screw
peed and API particle size) [161]. With the first intermediates, sam-
led just after extrusion, screw speed was found to influence the
oughness of the extrudates as well as their homogeneity. With the
econd intermediates (uncoated cores), CLS analysis revealed that
igher screw speed produced finer API granulates within the cores.

NIR-CI has been used to assess the difference of tartaric acid par-
icle size between tablet tops and bottoms [190]. Three different
atches were produced using different API particle sizes. A statis-
ically significant top/bottom difference in particle size was found
n tablets produced with larger API particles. API segregation was
ound to occur during the compression phase with the larger parti-
le size. Thus segregation can be minimized using fine-particle API.
IR-CI has also shown that larger API particle sizes result in blends
ith larger API agglomerates [163].

NIR-CI can also detect variation due to differences in tablet com-
ression force, i.e. it is an analytical tool for explaining physical
ariations [191]. In another recent study, it was also used to measure
he distribution of density and tabletting force in pharmaceutical
ablets containing different amount of magnesium stearate (MgS).
he tablet density was less uniform with low content of MgS [192].

.8. Particle size

Doub et al. [193] used Raman widefield imaging to characterize
queous suspension nasal spray formulations. In a preliminary val-
dation step, they evaluated the size of polystyrene microspheres.
he results showed good agreement with nominal values and no
tatistically significant differences between mean particle sizes. In
ctual samples of pure micronized drug substance, image analysis
f particle sizes showed good agreement with laser light scattering
LLS) in one half of the batches but not the other half. The ability of
aman imaging to discriminate between API and excipients in nasal
pray solution was also demonstrated. But particle sizes computed
ith Raman imaging differed from the LLS values. The authors

uggested further work (sample preparation, scanning more par-
icles, and studying formulations with different API particle sizes)
o improve the results.

.9. Counterfeit and identification

Counterfeit is now a serious problem as it can damage health
y supplying inappropriate substances or products devoid of API.
I is a useful weapon in rapid counterfeit detection. Our own lab-
ratory analyzed tablets from a suspect lot and original product
sing a wide FOV, processing both data cubes simultaneously by
CA (Fig. 15). The score images of the second principal compo-
ent (Fig. 15b) revealed great chemical differences between the
riginal and the product under investigation, which was therefore
ounterfeit.

NIR-CI is an effective tool for discriminating between fake and
eal medicines [49]: samples were analyzed in the same FOV with
he real medicine as reference; PCA score plots revealed samples
ontaining no API or differing in chemical composition. MIA of NIR
mages can also detect small differences in tablet uniformity that
iscriminate between counterfeit and real product [194]. FT-MIR

maging was combined with desorption electrospray ionization

inear ion trap mass spectrometry (DESI-MS) to identify chemical
pecies in a counterfeit antimalarial, finding no API present [195].

Websites offering cutprice pharmaceuticals are increasingly
ommon. The quality of such products may be inferior to that of
he genuine article and requires checking. NIR-CI was used to com-
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ig. 15. (a) Photograph of a suspected counterfeit (left) and the original product
right). The suspected counterfeit shows nonuniformity. (b) Score images for the
econd principal component. PCA reveals clearly different composition between the
wo tablets.

are generic tablets imported from Mexico, India, Thailand, Brazil,
nd Canada via the Internet with the US manufacturer’s tablets
196,197]. The Canadian tablets were similar in API blend uniformity
o the US product and hence presumably of the same quality. How-
ver, those from the other countries differed in API distribution, and
n particular in their API agglomerates, suggesting inferior quality.
IR-CI has become an analytical tool for assessing Internet drug
uality, with several Internet products failing the USP monograph
or quality attributes due to differences in chemical composition
nd compound distribution [105].

.10. Tablet imaging through blister packaging

Multispectral imaging has been used to evaluate water content
nd identify thousands of individual tablets through blister pack-
ging [198]. Water content was analyzed by pricking the blister
nd exposing the tablets to water vapor for 24 h, with six tablets
eing sampled hourly for calibration. Calibration was obtained by
easuring 43 tablets at 0.5 m. The standard error of estimate was

.06%. In the identification part of the study, some 1300 tablets
ould be visualized simultaneously, and SA could still be differen-
iated from acetylsalicylic acid (ASA) by PCA analysis (as confirmed
n Ref. [199]).

. Conclusions

Due to their complementarity and specificity, IR, NIR, and Raman
pectroscopy have been widely used to characterize chemical
pecies. The possibility of acquiring spatially located spectra adds a
aluable dimension to the analysis of matter. Since the first appear-
nce of chemical maps, a wide range of devices has been developed
llowing various modes of acquisition and a range of spectral and
patial resolutions. Such has been the technical advance that a
ull data cube can now be acquired within minutes. Users can

evise their own menu of preferred spectral/spatial information
nd set up the device accordingly for faster acquisition. The par-
llel emergence of new software (algorithms, computational tools,
nd chemometric and image-processing programs) has optimized
he processing of user-relevant information. Collaboration between
Biomedical Analysis 48 (2008) 533–553 551

maging and chemical experts will only improve data handling fur-
her.

By combining spectral and spatial information, CI provides
ignificant insights into pharmaceutical samples. There is now
ncontrovertible evidence that API and excipient distribution is
n important quality feature because of its potential impact on
ablet behavior. That accounts for the great interest in CI for
harmaceutical applications such as blend monitoring, polymorph
haracterization, and process monitoring. However, no fully on-line
pplications of CI for 100% quality control are as yet operational. The
IR pushbroom imagers that have been launched onto the market
re fast, but still not fast enough. On-line applications promise to
e a huge growth field for CI in the near future.
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